Ultra Sniffer New leak detection method

Sourcing new fusion technologies everywhere in Europe to foster your innovation…

Abstract

The test sensitivity of classic sniffer test method  is  limited  by  the  helium  concentration  in  the  air,  but  by  reducing  the  atmospheric helium concentration the test sensitivity can be significantly improved. The Ultra Sniffer Test gas (UST) method is simple – there is no evacuation of the test chamber, only a filling with helium free gas. The method has successfully been used for testing super conducting coils for Wendelstein 7-­X at the Max Planck Institute for Plasma Physics (IPP) in Greifswald. The technology is ready for use in the non-­‐fusion domain  and  is  currently  being  commercialized  by  the  inventor,  Mr.  Robert  Brockmann.

Description of the Technology

The  inventor  Robert  Brockmann  developed  an  Ultra  Sniffer  Test  gas  (UST)  method  that uses the partial vacuum effect (PV effect) for the detection of gas tightness of components.  A  characteristic  of  the  UST  method  is  the  extremely  high  system  sensitivity of 5×10-­‐10 Pam3/sec at atmospheric pressure (1013 mbar). In contrast to  conventional  vacuum  leak  test  methods,  the  UST-­‐Method  reduces  the  helium  partial pressure in a chamber with a helium free gas. This brings the helium partial pressure down to 1×10-­‐8 mbar, so the gas tightness of components can easily and reliably be determined with a sensitive 10-­‐10 Pam3/sec. This was demonstrated by tests conducted during the construction of the Wendelstein 7-­‐X fusion experiment at the  Max  Planck  Institute  for  Plasma  Physics  (IPP)  in  Greifswald.  It  was  shown  that  leaks at normal pressure (1013 mbar and 20°C) up to 10-­‐8 Pa*m3/sec. are easily detectable. This means that, with the UST-­‐Method, leaks with a theoretical loss of gas of 5 cm3 in 30 years are well within the detectable range.

Innovation and advantages of the offer

The  UST-­‐Method  is  ideal  for  leak  detection  and  leak-­‐tightness  of  complex  components and allows the detection of leaks with extreme sensitivity appreciably faster, more reliably and simpler than hitherto. Even tiny leaks, until now difficult or impossible to detect, can now be identified and even localised. The UST method can easily be adapted to diverse test objects – allowing tests even during the production process.  Detecting  leaks  with  the  UST  method  drastically  simplifies  the  testing  of objects  that  are  considered  to  be  difficult  to  test  or  even  non-­‐testable  by  other  means. Therefore UST is the only over-­‐pressure leak testing method that reaches the leakage  measurement  reliability  of  the  vacuum  test  gas  method  and  additionally  offers the ability to localize leaks.

Non-fusion applications

The  technology  has  successfully  been  applied  in  the  Nuclear  Fusion  domain.  In  particular it was used for tests during the construction of the Wendelstein 7-­‐X fusion experiment  at  the  Max  Planck  Institute  for  Plasma  Physics  (IPP)  in  Greifswald.  Further  domains  of  application  outside  fusion  are  targeted.  In  particular  the  application  to  testing  of  fuel  cells  seems  promising.  The  typical  criteria  for  the  selection of a test method are sensitivity, the possibility to also localize the leaks, the reliability of the tests, the complexity of the components that can be tested as well as  preparation  and  actual  test  time.  Against  all  these  criteria,  the  UST  method  is  superior  compared  to  conventional  methods.  In  particular  it  shows  the  same  sensitivity  as  vacuum  test  methods  combined  with  the  ability  to  also  localize  the  leaks.  New  application  areas  are  for  example  in  the  area  of  material  sciences.  However,  the  application  in  all  industry  domains  requiring  leak  detection  and  localization  in  pre-­‐production  seems  promising,  in  particular  for  ad  hoc  testing.  Foundries  could  be  a  potential  area  of  application,  and  also  the  area  of  magnetic  resonance imaging (MRT). Use in the Space Domain has already been explored by the inventor and was identified as promising.

Fusion Heritage

The method was developed for use in the Fusion domain. It was successfully tested at  the  Max  Planck  Institute  for  Plasma  Physics  (IPP)  in  Greifswald  and  certified  in  2013.  It  shows  superior  performance  over  conventional  methods  and  is  also applicable to the testing of complex components.

Leave a comment

Your email address will not be published. Required fields are marked *